

Cylinder Wake Feedback Control

Flow Visualization and Open Loop PIV Results

Stefan G. Siegel

Flow Vis Parameters

- Re = 120
- Cylinder Diameter D = 4.97 mm
- Forcing Amplitude A/D = 30% (1.49 mm pk)

Literature: Lock-In Range

Source: Robert Blevins, 1990,"Flow-Induced Vibration", 2nd Edition, Van Nostrand Reinhold, pp 55.

Unforced Center Line

Aeronautics Research Center – March 2002

Unforced Entire Span

Aeronautics Research Center – March 2002

Forced $St/St_n = 1$, A/D = 20%

Aeronautics Research Center – March 2002

Forced $St/St_n = 1.20$, A/D = 30%

Aeronautics Research Center – March 2002

Forced $St/St_n = 1.26$, A/D = 30%

Aeronautics Research Center – March 2002

Forced $St/St_n = 0.83$, A/D = 30%

Aeronautics Research Center – March 2002

Forced $St/St_n = 0.70$, A/D = 30%

Aeronautics Research Center – March 2002

Conclusions Flow Vis

- Forcing increases spanwise coherence of the Karman Vortex Street
- Lock-in to forcing could be achieved in a range of +- 23% around the natural vortex shedding frequency of St = 0.2, for a forcing amplitude of A/D = 30%
- These results agree well with the published literature

Preliminary PIV Measurements

Aeronautics Research Center – March 2002